n)-Approximation Algorithm For Directed Sparsest Cut

نویسندگان

  • MohammadTaghi Hajiaghayi
  • Harald Räcke
چکیده

We give an O( √ n)-approximation algorithm for the Sparsest Cut Problem on directed graphs. A näıve reduction from Sparsest Cut to Minimum Multicut would only give an approximation ratio of O( √ n log D), where D is the sum of the demands. We obtain the improvement using a novel LP-rounding method for fractional Sparsest Cut, the dual of Maximum Concurrent Flow.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cut-Matching Games on Directed Graphs

We give O(log n)-approximation algorithm based on the cut-matching framework of [10, 13, 14] for the computing the sparsest cut on directed graphs. Our algorithm uses only O(log n) single commodity max-flow computations and thus breaks the multicommodity-flow barrier for computing the sparsest cut on directed graphs.

متن کامل

Approximation Algorithms for Min UnCut, Min 2CNF Deletion, and Directed Cut Problems

We give O( √ logn)-approximation algorithms for the Min UnCut, Min 2CNF Deletion, Directed Balanced Separator, and Directed Sparsest Cut problems. The previously best known algorithms give anO(logn)-approximation for Min UnCut [9], Directed Balanced Separator [17], Directed Sparsest Cut [17], and an O(logn log logn)approximation for Min 2CNF Deletion [14]. We also show that the integrality gap ...

متن کامل

Advanced Approximation Algorithms ( CMU 18 - 854 B , Spring 2008 ) Lecture 27 : Algorithms for Sparsest Cut Apr 24 , 2008

In lecture 19, we saw an LP relaxation based algorithm to solve the sparsest cut problem with an approximation guarantee of O(logn). In this lecture, we will show that the integrality gap of the LP relaxation is O(logn) and hence this is the best approximation factor one can get via the LP relaxation. We will also start developing an SDP relaxation based algorithm which provides an O( √ log n) ...

متن کامل

Approximate Hierarchical Clustering via Sparsest Cut and Spreading Metrics

Dasgupta recently introduced a cost function for the hierarchical clustering of a set of points given pairwise similarities between them. He showed that this function is NP -hard to optimize, but a top-down recursive partitioning heuristic based on an αn-approximation algorithm for uniform sparsest cut gives an approximation of O(αn logn) (the current best algorithm has αn = O( √ log n)). We sh...

متن کامل

O ( √ log n ) Approximation to Sparsest Cut in Õ ( n 2 ) Time

We show how to compute O( √ logn)-approximations to Sparsest Cut and Balanced Separator problems in Õ(n) time, thus improving upon the recent algorithm of Arora, Rao and Vazirani (2004). Their algorithm uses semidefinite programming and required Õ(n) time. Our algorithm relies on efficiently finding expander flows in the graph and does not solve semidefinite programs. The existence of expander ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005